
Office of Clean Coal and Carbon Management

David Mohler
Deputy Assistant Secretary
U. S. Department of Energy

Office of Fossil Energy

Office of Clean Coal

VISION

A secure, reliable, and affordable energy future with the environmentally sound use of coal and all fossil fuels

MISSION

Support the research, development, and demonstration of advanced technologies to ensure the availability of clean, affordable energy from coal and fossil fuel resources

WWW.ENERGY.GOV/FE

GOALS

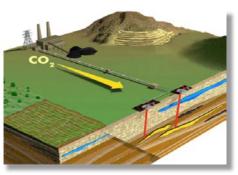
- Demonstrate significantly lower-cost CO₂ capture technologies to enable widespread deployment of near-zero emission fossil-based technologies
- 2. Acceptance by industry, financial institutions, regulators, and the public that CO₂ can be safely injected, monitored, and permanently stored in a variety of geologic formations
- Conduct high-risk, transformational research and development on coal fossil fuel technologies
- Drive international collaboration to ensure widespread acceptance and deployment of CCS and advanced coal technologies
- Provide data and expertise to support policy, legislation, and regulation impacting fossil fuel research

David MohlerDeputy Assistant Secretary

Previously:

- Senior Vice President and Chief Technology Officer, Duke Energy
- Vice President of Strategic Planning, Cinergy

M.A., Xavier University of Cincinatti


M.S., University of Pennsylvania

B.A., Indiana University

B.S., University of the State of New York at Albany

Office of Clean Coal and Carbon Management

CO₂ Capture

CO₂ Storage

Advanced Energy Systems

Crosscutting Research

Cost effective capture for new and existing plants

Major Goals: 2nd generation pilot tests (10 to 20 MW) by 2020. Transformational technology field tests by 2025

Safe, permanent storage of CO2 from power and industry

Major Goals: technologies and tools available to measure and account for 99% of injected CO₂. CCS best practices and protocols completed by 2020.

Gasification, Advanced turbines, Advanced combustion, CBTL, and fuel cells

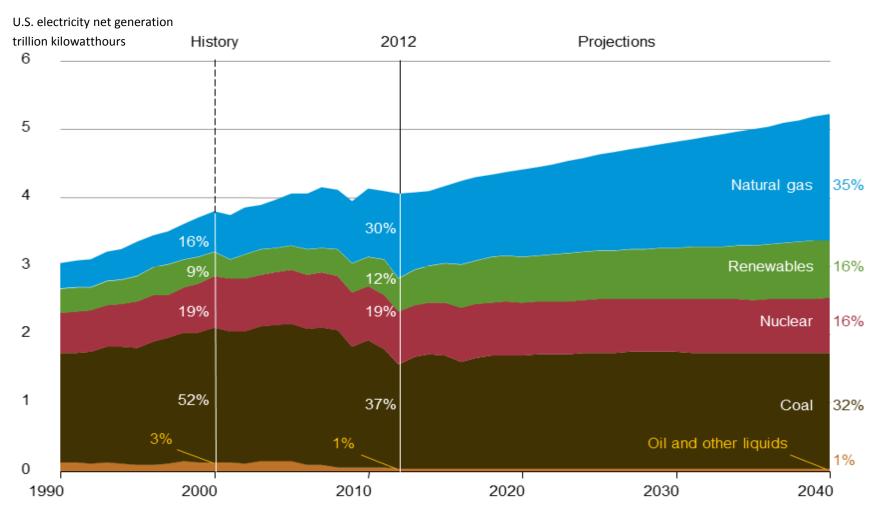
Major Goals:

2025: 20-30% reduction in combined cycle capital cost (2nd gen)

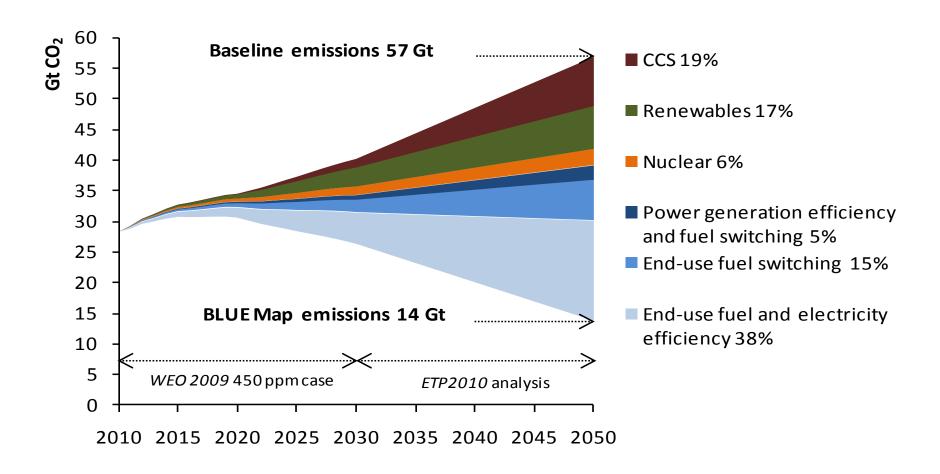
2025: Advanced combustion ready for pilot scale operation (transformational)

Crosscutting technology development program

Major Goals:

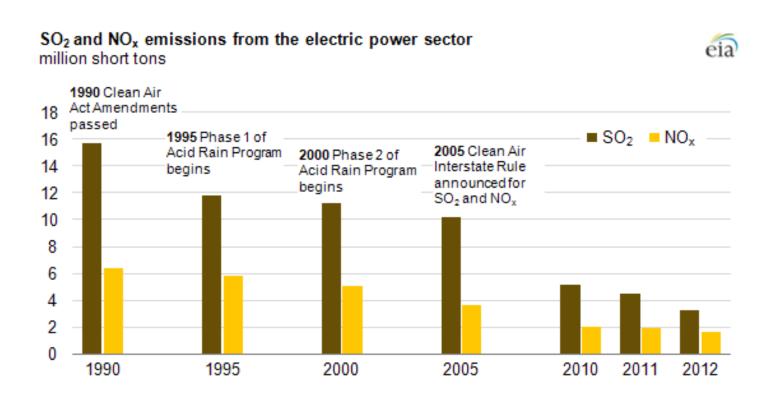

2016: advance 2nd gen materials, sensors, modeling technologies to applied programs

2020: develop distributed communication sensor networks (transformational tech)


Office of Clean Coal and Carbon Management :: Major Issues

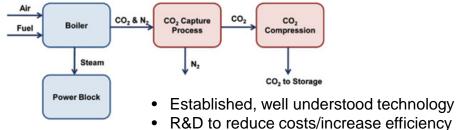
- **➣** Rebalance the value equation for CO₂
 - R&D portfolio
 - 7 major demonstrations
- **⋄** Quantify/demonstrate/document the viability of long term geologic storage of CO₂, including via enhanced oil recovery (EOR)
 - 7 regional partnerships
- ➤ Design/implement international collaborations to increase cooperation on carbon capture and sequestration (CCS) technologies
 - Promote bilateral partnerships for R&D collaboration with an emphasis on large scale projects
 - Key partners: China, Japan, UAE, Norway, UK, Canada, others...
 - ➢ Provide leadership in multilateral forums to develop CCS policy, leverage R&D platforms, and enhance information sharing/exchange of best practices (i.e., test center networks)
 - **Key partners:** CSLF, IEA, GCCSI, others...
- Innovate new power systems to increase efficiency

Over time the electricity mix shifts toward natural gas and renewables, but coal remains the largest fuel source



Advanced CCS Technologies are Critical to Reducing Global CO₂ Emissions

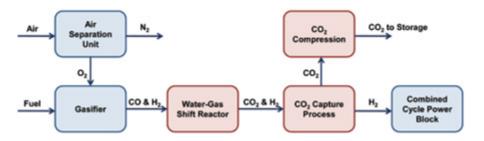
Clean Air Act of 1963 (extended in 1970, amended in 1977 and 1990)


- EPA to develop and enforce regulations to protect the public from airborne contaminants known to be hazardous to human health
- Early regulations focused on pollutants such as SO2, NOx, Mercury, and PMs from coal plants
- Newly proposed regulations 111(b) and 111(d) address carbon dioxide pollution

Post-Combustion Capture

Primarily applicable to conventional coal- or gas-fired power plants. In a typical coal plant, fuel is burned with air in a boiler to produce steam.

CO₂ is separated after the fuel is combusted using sorbents, solvents or membrane systems.

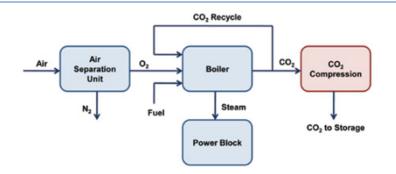


- Suitable for retrofit of existing plants

Pre-Combustion Capture

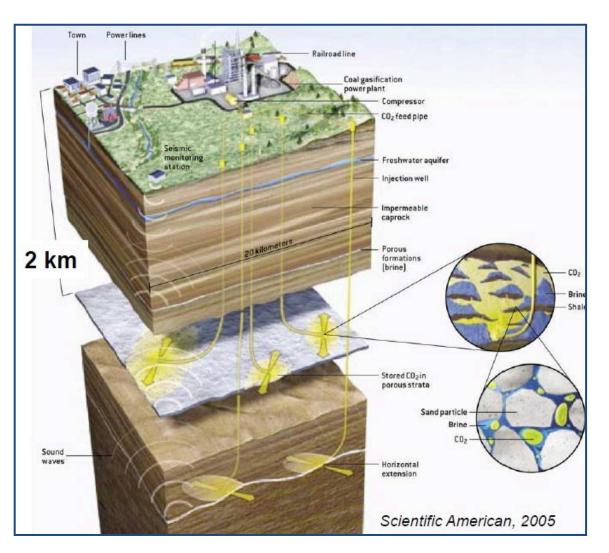
Primarily applicable to gasification plants, where solid fuel (coal, biomass, or coal/biomass mixture) is converted into gaseous components.

CO₂ is separated **prior to combustion**. Also decades old technology base applied commercially world-wide


- Offers greater efficiency
- R&D/demonstrations address integration & cost challenges

Oxy-Combustion

Coal is combusted with relatively pure oxygen diluted with recycled CO₂ or CO₂/steam mixtures. Under these conditions, the primary products of combustion is water and a highly concentrated CO₂ stream. The CO₂ is separated from water vapor by condensing the water through cooling and compression


Suitable for new plants and for retrofits

Chemical Looping is a variant of oxy-combustion

Emerging solution that may offer advantages over conventional pre-post combustion designs

CO₂ is captured and concentrated from large sources, then injected deep underground

Capture: Power plants and industrial sources

- Pre-combustion
- Post-combustion
- Oxyfired combustion
- Chemical looping

Storage: > 1km depth

- Porous & permeable units
- Large capacity
- Good seals and cap rock

Two main targets

- Saline formations (~2200 Gtons capacity in N. Am.)
- Enhanced oil recovery (~100 B bbls addl. recovery)

Major CCUS Demonstrations

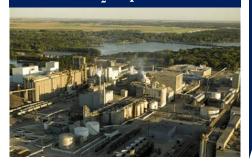
- Portfolio represents both EOR and storage in saline aquifers
- Portfolio includes industrial and power capture
- Portfolio includes pre-, post-, and oxy-combustion capture

	Partnership	Project	Status
1	Air Products	Steam Methane Reformer Hydrogen Production. EOR utilization ~925,000 MT/year	Operations
2	Southern Company Services (Kemper)	Integrated Gasification Combined Cycle (IGCC). EOR utilization ~3,000,000 MT/year	Under Construction
3	Archer Daniels Midland	Ethanol Fermentation CO2. Saline storage ~900,000 MT/year	Under Construction
4	NRG Energy (Petra Nova) WA Parish	Retrofit Pulverized Coal Plant. EOR utilization ~1,400,000 MT/year	Under Construction
5	Summit Texas Clean Energy Project	Integrated Gasification Combined Cycle Polygeneration. EOR utilization ~2,200,000 MT/year	Financing
6	Leucadia Energy, LLC	Methanol from Petcoke Gasification. EOR utilization ~4,500,000 MT/year	Front End Engineering & Design
7	FutureGen 2.0	Oxycombustion Pulverized Coal Boiler Retrofit. Saline storage ~1,000,000 MT/year	Front End Engineering & Design
8	Hydrogen Energy California (HECA)	Integrated Gasification Combined Cycle Polygeneration. EOR utilization ~2,570,000 MT/year	Front End Engineering & Design

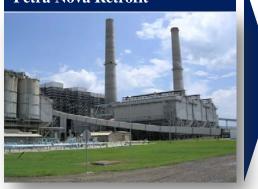
Commercial scale CCS Demonstrations are major industrial projects

Kemper County Energy Facility

Collaboration with Southern Company


- 582 MW plant
- \$ 4.7 billion total project cost
 - DOE share: \$270 million
- Plant construction: 95% complete; more than 3,500 construction workers on site
- Approximately 67% carbon capture (3,000,000 tons of CO₂ per year for EOR)

CO₂ Capture Demonstrations: Program highlights


Air Products Industrial Capture to EOR

Archer Daniels Midland Ethanol CO₂ Capture

Petra Nova Retrofit

Air Products Industrial Capture to EOR

Port Arthur, TX (Hydrogen plant at Valero Refinery)

90%+ $\rm CO_2$ capture (Vacuum Swing Adsorption) from 2 steam methane reformers yielding ~925,000 tonnes $\rm CO_2$ /year

CO₂ delivered for EOR in West Hastings oil field

Total Project: \$431 million. DOE share: \$284 million

Project executed on time and under budget. +700k hours with no lost time incidents.

Archer Daniels Midland, Ethanol Capture and Saline Storage

Decatur, Illinois

90%+ capture from ethanol fermentation, compression, and injection into saline formation

Design: ~1,000,000 tonnes CO₂ / year; injection directly under project site (100% Saline)

Project nearly completed; Second Class VI permit issued by EPA (Region 5)

Operations: Early-2015

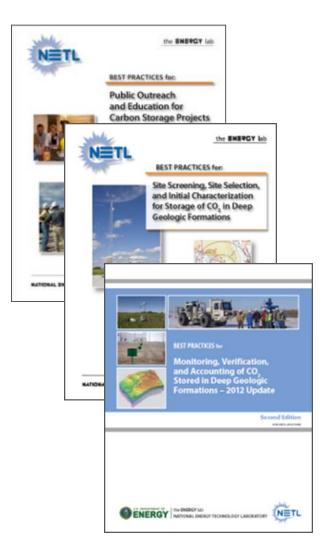
Total Project: \$207 million. DOE share: \$66 million

Petra Nova (NRG) Advanced Post Combustion Capture Retrofit

Thompsons, TX

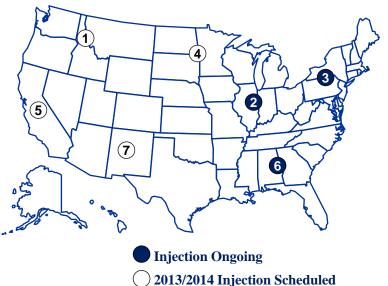
240 MWe slipstream at NRG's W.A. Parish power plant (scaled up from original 60 Mwe)

90% CO₂ capture ~1,400,000 tonnes CO₂/year (2.2 MT to EOR, 0.5 MT to urea)


EOR: Hilcorp West Ranch Oilfield

Total Project: \$1 billion. DOE share: \$167million

Achieved financial close and began construction July 15, 2014


CCS Best Practices Manuals

Critical Requirement For Significant Wide Scale Deployment - Capturing Lessons Learned

Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)
Monitoring, Verification and Accounting	2009/2012	2016	2020
Public Outreach and Education	2009	2016	2020
Site Characterization	2010	2016	2020
Geologic Storage Formation Classification	2010	2016	2020
**Simulation and Risk Assessment	2010	2016	2020
**Carbon Storage Systems and Well Management Activities	2011	2016	2020
Terrestrial	2010	2016 – Post MVA Phase III	

Regional Carbon Sequestration Partnerships

- Geology: Projects represent six of eleven identified depositional environments in the United States.
- Storage methodology: Projects include EOR and saline aquifer storage
- Preceded by 20 small-scale projects that cumulatively injected over 1 million tonnes

		Partnership	Project	Status
>	1	Big Sky Carbon Sequestration Partnership	Saline storage of naturally occurring CO ₂ (1 million tonnes over 4 years)	Site operations; Injection 2014
	2	Midwest Geological Sequestration Consortium	Saline storage of CO ₂ from ADM biofuel production (1 million tonnes over 3 years)	Injection began Nov. 2011
	3	Midwest Regional Carbon Sequestration Partnership	EOR using CO ₂ from gas processing plant (1 million tonnes over 4 years)	Injection began Feb. 2013
	4	Plains CO ₂ Reduction Partnership	 Project 1: EOR using CO₂ from ConocoPhillips Gas Plant (1 million tonnes over 2 years) Project 2: Saline storage of CO₂ from Spectra Energy gas processing plant (1.3 million tonnes over 2 years) 	1) Injection June 2013 2) Site operations; injection 2015
	5	West Coast Regional Carbon Sequestration Partnership	Regional Characterization	No large- scale injection
	6	Southeast Regional Carbon Sequestration Partnership	 Project 1: Saline leg of EOR; storage natural CO₂ (Over 3.6 million tonnes by Sept. 2014) Project 2: Saline storage of amine captured CO₂ from coal-fired generation (250,000 tonnes over 2 years) 	1) Injection began 2009 2) Injection began Aug. 2012
	7	Southwest Regional Partnership on Carbon Sequestration	EOR storage of CO ₂ from fertilizer and ethanol plants (1 million tonnes over 5 years)	Site operations; injection late 2013 ₁₅