Low-Energy Carbon Capture Using Metal-Organic Frameworks

Jeffrey R. Long

University of California, Berkeley Lawrence Berkeley National Laboratory

Center for Gas Separations Relevant to Clean Energy Separations

Jeffrey R. Long, Director Berend Smit, Deputy Director

University of California, Berkeley Lawrence Berkeley National Laboratory

Mission and Approach

The aim of the CGS is to develop new materials and membranes that enable energy-efficient separation of gas mixtures, as required in the clean use of fossil fuels and in reducing emissions from industry.

Particular emphasis is on:

- (1) Separations that reduce CO_2 emissions from power plants
- (2) Energy-intensive gas separations in industry and agriculture

The research involves close cooperation between four teams:

Adsorbent Synthesis Team Membrane Synthesis Team Physical Characterization Team Computational Team

CGS Principal Investigators

Adsorbent Synthesis Team

Jeffrey Long (UC Berkeley), Hong Cai (Joe) Zhou (Texas A&M University), Omar Yaghi (UC Berkeley)

Membrane Synthesis Team

Michael Tsapatsis (U Minnesota), Brett Helms (LBNL), David Hopkinson (NETL), Jeffrey Long (UC Berkeley), Ting Xu (UC Berkeley)

Physical Characterization Team

Jeffrey Reimer (UC Berkeley), Craig Brown* (NIST), Jeffrey Kortright (LBNL), Wendy Queen* (LBNL), Simon Teat (LBNL)

Computational Team

Berend Smit (UC Berkeley), Maciej Haranczyk* (LBNL), Laura Gagliardi* (U Minnesota), Jeffrey Neaton (UC Berkeley), David Prendergast (LBNL), Steve Whitelam (LBNL)

*Associated Investigator

CGS Science

Novel Metal-Organic Frameworks and Porous Polymers

Phase-change adsorbents for CO_2 removal from: flue gas, natural gas, air Redox-active adsorbents for the separation of O_2 from air Back-bonding metals for the removal of N_2 from natural gas Lock-and-key adsorbents for shape-selective hydrocarbon separations

Novel Membranes

Supported metal-organic framework membranes Mixed-matrix membranes Metal-organic polyhedra-copolymer membranes

Cross-Cutting Research

Mechanical properties of metal-organic frameworks *In-situ* characterization of gas adsorption Computational prediction of gas adsorption and transport

Metal-Organic Frameworks

BET surface areas up to 7100 m²/g Density as low as 0.13 g/cm³ Tunable pore sizes up to 10 nm Pores connected in 1-, 2-, or 3-D

Internal surface can be functionalized

Can these materials be used for low-energy CO₂ capture?

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

Yaghi et al. *Nature* **2003**, *4*23, 705 Kitagawa et al. *Angew. Chem., Int. Ed.* **2004**, *43*, 2334 Férey *Chem. Soc. Rev.* **2008**, *37*, 191

S Center for Gas Separations Relevant to Clean Energy Technologies

A Coal-Fired Power Plant Flue Gas

	vol %	diameter (Å)
N_2	73-77	3.64
CO_2	15	3.30
H ₂ O	5-7	2.65
O ₂	3-4	3.46
SO ₂	<0.08	
NO_x	0.05	
CO	0.002	3.76

Temperature = 40-50 $^{\circ}$ C, total pressure = 1 bar

Aqueous Amine-Based CO₂ Capture

adsorption at 40 $^\circ\,$ C and desorption at 120 $^\circ\,$ C

Problems: Decomposition, low working capacity (~2 wt %), and high energy cost

(~30% energy penalty)

Heat Capacity of a Solid Adsorbent

Concentration of MEA employed is limited by corrosivity issues

Mason, Sumida, Herm, Krishna, Long Energy Env. Sci. 2011, 4, 3030

A Diamine-Appended MOF

 Dangling amines coat the periphery of the channels leaving space for rapid CO₂ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Strong, Selective CO₂ Adsorption

- Exposure to simulated dry flue gas leads to reversible uptake of 15 wt % CO₂
- Calorimetry data indicates regeneration energy of just 2.2 MJ/kg of CO₂

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Center for Gas Separations

Relevant to Clean Energy Technologies

Stepped Isotherms Indicate Cooperativity

- Step position shifts rapidly to higher pressure upon increasing temperature
- Cooperativity is not due to framework flexibility, so what is the mechanism?

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Center for Gas Separations

Relevant to Clean Energy Technologies

Classical versus Phase-Change Adsorbents

 For phase-change adsorbents, a small change in temperature gives a large separation working capacity

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Kyuho, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

Cooperative CO₂ Insertion to form Chains

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Kyuho, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

Center for Gas Separations Relevant to Clean Energy Technologies

Variation of Metal Shifts Step Position

Variation of the Diamine Shifts Step Position

- >50 commercial diamines have now been tested in Mg₂(dobpdc)
- Step position at 40 °C varies from ~50 ppm to >1.2 bar

Variation of the Diamine Shifts Step Position

Methyl and ethyl substituted amine materials can be regenerated at 75-80 °C

Center for Gas Separations

Relevant to Clean Energy Technologies

Primary amine enables high-temperature CO₂ adsorption

ARPA-E IMPACCT PROJECT (2010-2015)

CO₂ Adsorption Screening Rapid screening of CO₂ capture performance 400

High-throughput Instrumentation

Wildcat **Disc**overy Technológies

Computational Analysis

Data analysis, life cycle and sorbent performance analysis

Wildcat Multicomponent Gas Adsorption Analyzer

- Equilibrium adsorption measurements based upon mass spec analysis
- Can measure 28 samples in parallel for mixture including CO₂, N₂, H₂O, O₂, SO₂

Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long, J. Am Chem. Soc. 2015, 137, 4787

CO₂ Adsorption in the Presence of Water at 40 °C

Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long, J. Am Chem. Soc. 2015, 137, 4787

Low Temperature Cycling for CO₂ Capture

- >15 wt % CO₂ adsorbed from stream of 15% CO₂, 4% O₂, 1% H₂O, 80% N₂
- Over 1000 cycles, capacity loss is just 0.0017% per cycle

Mosaic Materials, Inc.

Founders

- Dr. Steven Kaye, LBNL
 - Chief Science Officer, Wildcat Discovery Technologies
 - 7 years of technology venture and business development experience
 - 29 patents on new materials/equipment
 - B.S. MIT, Ph.D. UC Berkeley (Long Group)

Prof. Jeffrey Long, UC Berkeley and LBNL

- Director, DoE Energy Frontier Research Center for Gas Separations
- Director, Berkeley Hydrogen Storage Program
- >220 publications, >10 patents on MOFs

Funding

Cyclotron Road, LBNL

- New division founded by Dr. Ilan Gur (ARPA-E)
- Incubator for new energy technologies
- Provides seed funding, facilities, and equipment

Pelletization, Scale-Up, Process Design

Scale:

Inexpensive synthesis developed for key MOFs suggests a production cost < \$10/kg</p>